Enter a problem...
Linear Algebra Examples
[2x+3y3x-y]=[716][2x+3y3x−y]=[716]
Step 1
Write as a linear system of equations.
2x+3y=7
3x-y=16
Step 2
Step 2.1
Solve for x in 2x+3y=7.
Step 2.1.1
Subtract 3y from both sides of the equation.
2x=7-3y
3x-y=16
Step 2.1.2
Divide each term in 2x=7-3y by 2 and simplify.
Step 2.1.2.1
Divide each term in 2x=7-3y by 2.
2x2=72+-3y2
3x-y=16
Step 2.1.2.2
Simplify the left side.
Step 2.1.2.2.1
Cancel the common factor of 2.
Step 2.1.2.2.1.1
Cancel the common factor.
2x2=72+-3y2
3x-y=16
Step 2.1.2.2.1.2
Divide x by 1.
x=72+-3y2
3x-y=16
x=72+-3y2
3x-y=16
x=72+-3y2
3x-y=16
Step 2.1.2.3
Simplify the right side.
Step 2.1.2.3.1
Move the negative in front of the fraction.
x=72-3y2
3x-y=16
x=72-3y2
3x-y=16
x=72-3y2
3x-y=16
x=72-3y2
3x-y=16
Step 2.2
Replace all occurrences of x with 72-3y2 in each equation.
Step 2.2.1
Replace all occurrences of x in 3x-y=16 with 72-3y2.
3(72-3y2)-y=16
x=72-3y2
Step 2.2.2
Simplify the left side.
Step 2.2.2.1
Simplify 3(72-3y2)-y.
Step 2.2.2.1.1
Simplify each term.
Step 2.2.2.1.1.1
Apply the distributive property.
3(72)+3(-3y2)-y=16
x=72-3y2
Step 2.2.2.1.1.2
Multiply 3(72).
Step 2.2.2.1.1.2.1
Combine 3 and 72.
3⋅72+3(-3y2)-y=16
x=72-3y2
Step 2.2.2.1.1.2.2
Multiply 3 by 7.
212+3(-3y2)-y=16
x=72-3y2
212+3(-3y2)-y=16
x=72-3y2
Step 2.2.2.1.1.3
Multiply 3(-3y2).
Step 2.2.2.1.1.3.1
Multiply -1 by 3.
212-33y2-y=16
x=72-3y2
Step 2.2.2.1.1.3.2
Combine -3 and 3y2.
212+-3(3y)2-y=16
x=72-3y2
Step 2.2.2.1.1.3.3
Multiply 3 by -3.
212+-9y2-y=16
x=72-3y2
212+-9y2-y=16
x=72-3y2
Step 2.2.2.1.1.4
Move the negative in front of the fraction.
212-9y2-y=16
x=72-3y2
212-9y2-y=16
x=72-3y2
Step 2.2.2.1.2
To write -y as a fraction with a common denominator, multiply by 22.
212-9y2-y⋅22=16
x=72-3y2
Step 2.2.2.1.3
Combine -y and 22.
212-9y2+-y⋅22=16
x=72-3y2
Step 2.2.2.1.4
Combine the numerators over the common denominator.
212+-9y-y⋅22=16
x=72-3y2
Step 2.2.2.1.5
Combine the numerators over the common denominator.
21-9y-y⋅22=16
x=72-3y2
Step 2.2.2.1.6
Multiply 2 by -1.
21-9y-2y2=16
x=72-3y2
Step 2.2.2.1.7
Subtract 2y from -9y.
21-11y2=16
x=72-3y2
21-11y2=16
x=72-3y2
21-11y2=16
x=72-3y2
21-11y2=16
x=72-3y2
Step 2.3
Solve for y in 21-11y2=16.
Step 2.3.1
Multiply both sides by 2.
21-11y2⋅2=16⋅2
x=72-3y2
Step 2.3.2
Simplify.
Step 2.3.2.1
Simplify the left side.
Step 2.3.2.1.1
Simplify 21-11y2⋅2.
Step 2.3.2.1.1.1
Cancel the common factor of 2.
Step 2.3.2.1.1.1.1
Cancel the common factor.
21-11y2⋅2=16⋅2
x=72-3y2
Step 2.3.2.1.1.1.2
Rewrite the expression.
21-11y=16⋅2
x=72-3y2
21-11y=16⋅2
x=72-3y2
Step 2.3.2.1.1.2
Reorder 21 and -11y.
-11y+21=16⋅2
x=72-3y2
-11y+21=16⋅2
x=72-3y2
-11y+21=16⋅2
x=72-3y2
Step 2.3.2.2
Simplify the right side.
Step 2.3.2.2.1
Multiply 16 by 2.
-11y+21=32
x=72-3y2
-11y+21=32
x=72-3y2
-11y+21=32
x=72-3y2
Step 2.3.3
Solve for y.
Step 2.3.3.1
Move all terms not containing y to the right side of the equation.
Step 2.3.3.1.1
Subtract 21 from both sides of the equation.
-11y=32-21
x=72-3y2
Step 2.3.3.1.2
Subtract 21 from 32.
-11y=11
x=72-3y2
-11y=11
x=72-3y2
Step 2.3.3.2
Divide each term in -11y=11 by -11 and simplify.
Step 2.3.3.2.1
Divide each term in -11y=11 by -11.
-11y-11=11-11
x=72-3y2
Step 2.3.3.2.2
Simplify the left side.
Step 2.3.3.2.2.1
Cancel the common factor of -11.
Step 2.3.3.2.2.1.1
Cancel the common factor.
-11y-11=11-11
x=72-3y2
Step 2.3.3.2.2.1.2
Divide y by 1.
y=11-11
x=72-3y2
y=11-11
x=72-3y2
y=11-11
x=72-3y2
Step 2.3.3.2.3
Simplify the right side.
Step 2.3.3.2.3.1
Divide 11 by -11.
y=-1
x=72-3y2
y=-1
x=72-3y2
y=-1
x=72-3y2
y=-1
x=72-3y2
y=-1
x=72-3y2
Step 2.4
Replace all occurrences of y with -1 in each equation.
Step 2.4.1
Replace all occurrences of y in x=72-3y2 with -1.
x=72-3(-1)2
y=-1
Step 2.4.2
Simplify the right side.
Step 2.4.2.1
Simplify 72-3(-1)2.
Step 2.4.2.1.1
Combine the numerators over the common denominator.
x=7-3⋅-12
y=-1
Step 2.4.2.1.2
Simplify the expression.
Step 2.4.2.1.2.1
Multiply -3 by -1.
x=7+32
y=-1
Step 2.4.2.1.2.2
Add 7 and 3.
x=102
y=-1
Step 2.4.2.1.2.3
Divide 10 by 2.
x=5
y=-1
x=5
y=-1
x=5
y=-1
x=5
y=-1
x=5
y=-1
Step 2.5
List all of the solutions.
x=5,y=-1
x=5,y=-1